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By expressing classical electron theory in terms of "charge-field" functional 
structures, it is shown that a finite formulation of the classical electrodynamics 
of point charges emerges in a simple and elegant fashion. The classical charge- 
field form of microscopic electron theory plays the role of a covering theory for 
"renormalized classical electron theory," with the distinct advantage that this is 
accomplished by a dynamic subtraction mechanism, built into the theory. We 
then generalize this formalism into a hole-theoretic, second-quantized Dirac 
formulation, in order to construct a "charge-field" quantum electrodynamic 
theory, and discuss its basic properties. We find, in addition to the possibility 
that the finiteness of the classical theory may be propagated into the quantum 
field theory, that interacting photon states are generated as a secondary 
manifestation of electron-positron quantization, and do not require the usual 
"free" canonical quantization scheme. We discuss the possibility that this 
approach may lead to a better formulation of quantum electrodynamics in the 
Heisenberg picture and suggest a crucial experimental test to distinguish this 
new charge-field quantum electrodynamics "QEMED" from the standard QED 
formulation. Specifically QEMED predicts that the "Einstein principle of 
separability" should be found to be valid for correlated photon polarization 
measurements, in which the polarizers are changed more rapidly than a char- 
acteristic photon travel time. Such an experiment (Aspect, 1976) can distinguish 
between QEMED and QED in a complete and clear-cut fashion. 

Science, like art, admits aesthetic criteria; it seeks 
theories that display proper conformify of the parts to 
one another, and to the whole, while still showing 
some strangeness in their proportion. 

Chandrasckhar (1979). 
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1. INTRODUCTION 

The "elementary measurement" field-theoretical approach to elec- 
trodynamic processes in the microcosm uses the new field-theoretical 
language of "charge fields." This charge-field approach to electrodynamic 
processes is based on the paradigm that charges and their associated 
electromagnetic fields are permanently connected in elementary charge- 
field functional structures, with physical processes being described by the 
mutual elementary measurement interactions between various charge-field 
entities in the system. The classical elementary measurement elec- 
trodynamics (CEMED) theory (Leiter, 1969, 1974, 1980), is a completely 
finite and self-consistent electromagnetic theory, which contains an opera- 
tional, dynamic, subtraction mechanism (built into the formalism) which 
guarantees finite observables. We will develop a second-quantized version 
of the charge-field formalism, in this paper, by first formulating the 
classical theory in its most natural form, which requires the Maxwell 
charge field to be an N | N matrix, for a theory of N 1> 2 classical electrons 
in interaction. The absence of the coulombic self-energy infinity is shown 
to be enforced by the dynamic structure of the charge-field interaction 
occurring in the Lagrangian. The matrix formalism is then generalized into 
a Dirac hole-theoretic, second-quantized version via the intermediary step 
of semiclassical quantization, upon which Dirac anticommutation relations 
are then imposed. In this charge-field formulation of quantum elec- 
trodynamics, "photons" are spontaneously generated via the electron- 
positron quantization, and no separate quantization of the electromagnetic 
field is required. We will call this charge-field theory Quantum Elementary 
Measurement Electrodynamics, QEMED. 

2. A B R I E F  R E V I E W  OF THE CLASSICAL 
ELECTRODYNAMICS OF CHARGE FIELDS 

The initial formal structure of the classical electrodynamics of charge 
fields (CEMED) was first developed by Leiter (1969, 1974). However, a 
more elegant formulation (an N |  matrix formulation presented here) 
will allow us to proceed with the generalization into second quantization. 
To see this let us now consider "N"  point charges (N ~ 2), whose trajec- 
tory dynamic variables are represented in the matrix form (Leiter, 1980), 

0 

0 
(2.1) 
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Associated with this matrix will be a current density matrix [J~'> ] 
j =  J#> 0 , 

0 s~,o 

a mass matrix 

M =  

re(l) 

j(x)__ q (K)  dx(~ x) 63(x_x(X)(t)  ) 
c dt 

m(2) 0 

0 rn(N)  

(2.2) 

(2.3) 

a proper-time matrix and a 4-velocity matrix given by u ", where l rO) J 
r(2) 0 

aT = ] / -  1 d t ,  ~/~- " .  ' 

0 T(N) 

"y( K )  = 

(2.4) 

u s = d r - l ( d x " )  = y ( d x " l d t )  (2.5) 

and finally the " N "  Maxwell charge-field degrees of freedom, represented 
in terms of the matrix form, N > 2, [A~', ] 

A<#> 0 
At, ~ 

0 A (N) 

(2.6) 

and 

F+,v=(A#,v-Av,~,), ~ ff~,v=�89 '~t) (2.7) 
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The action integral which gives the finite formulation of the charge-field 
electrodynamics in this matrix language is (note: Tr means matrix trace) 

I= f Tr(Mc2 u~u ~ dT)+ f dx4[Tr(F,v)Tr(pV)-Tr(F~F "v) 

+ Tr(jr)Tr(A ~) _ Tr(JrA r) ] c (2.8) 

It is straightforward to see that the interaction terms JyC)A r(l~), K= 
1,2 ..... N, which will be associated with the time-symmetric self-Coulomb 
interaction, are dynamically excluded from this action, and hence never 
reappear to create self-energy infinites in the equations of motion. We also 
note that, before the variation, the point charge current matrix in equation 
(2.2) obeys the current conservation identity 

j , r  ~ 0  (2.9) 

To obtain the equations of motion from (2.8) we vary the matrix dynami- 
cal variables 8~, 614 ", respectively, to obtain the matrix equations ~ 

and 

M(dug/d.r) = f ax3{Tr(Fv.)- 

(Tr( F~v ) - F~)  'v = (Tr(Jr) - Jr)  

(2.1o) 

(2.11) 

Taking the matrix trace of equation (2.11) yields 

(N - 1)Tr(F~v ")  = (N - 1)Tr(Jr) (2.12) 

now since N ~ 2 in order for the charge-field formalism to contain interac- 
tions, then ( N - 1 ) 4 = 0  and (2.11) and (2.12) yield 

Fry = 0  (2.13) Go,v=jr, - , o -  

Although this equation looks formally like the usual form of MaxwelFs 
equations, it is actually an N | N matrix equation (N > 2), associated with 
the particle equation of motion (2.10). It is specifically this ( N > 2 ) -  
dimensional matrix property (associated with the charge-field concep0 that 
each charged particle has a particular Maxwell charge-field dynamical 
variable structure, before the variation is performed, which allows (2.8) 
and (2.10) to yield a finite formulation of classical electron theory, without 
infinities occurring, since if (2.6) is chosen to be a matrix "scalar" ( N -  1), 

1We will use the notation F~oI~---=SVF~ 
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then (2.8) and (2.10) contain no electromagnetic interaction, and are 
empty. The electromagnetic energy,momentum tensor, from (2.10) and 
(2.13), is of the form 

Tr(F~)Tr(F=/t)  - Tr(F~F=B) + Tr(F~)Tr(F~)  - Tr (F~  F~) 

(2.14) 

and it obeys the conservation law 

T~v ,v = Tr(Jv)Tr(F~ v ) - Tr(Jv F, ~) (2.15) 

From (2.15) the "electromagnetic" energy associated with this formalism is 

E(=)=fdx3Too=fdx3[(Tr(E))Z+(Tr(B))f-Tr((E)2+(B)2)] 
(2.16) 

which is not positive definite, for like charges, necessarily. 
However we can insure that (2.16) is positive definite, for like charges, 

by properly imposing the necessary boundary conditions on (2.13). The 
most general "charge-field" solution to (2.13) is a mixture of time-symmet- 
ric and time-antisymmetric charge-field potentials a (x) where, in the tt(• 
Lorentz gauge, a,<+~ '" = 0 and D_+ (x) ~= [D(X)ret + Dadv(X)l/2 

(2.17) 

A simple formal solution to (2.13) which involves only charge fields (2.17), 
the homogeneous solutions being set to zero by proper boundary condi- 
tions, is 

A s = as,+)+ Tr(Ttas,_)) (2.18) 

where ~ is a matrix which determines the degree of mixing of the time-sym- 
metric and time-antisymmetric charge fields occurring in (2.16). It can 
easily be seen that the proper boundary condition which makes the 
electromagnetic energy positive definite for like charges, while choosing a 
retarded time arrow on the mutual electromagnetic fields, requires that 

~t---.(I)/(N-- 1), N ~ 2  (2.19) 
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For this choice of boundary condition on the charge-field solutions to 
(2.13), the solutions can be written as 

At, = a&+ + Tr (a t ` ,_ , ) / (N-  1) (2.20) 

and, when inserted into (2.16), yields 

(era) ~--- ~ (ret) + ~ (TCRF) (2.21) 

where 

1 3 2 2 2 2 .o,)_=_ fax [ (Tr(e~,t)) + (Tr(bret)) - Tr((e~+,) + (b,+))) ] (2.22) 

is the already finite reminder of the "automatically renormalized," re- 
tarded electromagnetic energy (occurring automatically via the dynamics 
of the formalism) and the "total coupled radiation field" EffCRF ) is 

f dx 3 (Tr(e(_)))2 + (Tr(b(_)))2 
E (TCRF) J 2(N- l) (2.23) 

For  like charges, both (2.23) and (2.22) are positive, thus making (2.21) 
positive definite as required. In these equations, e(._,re 0 and b(x,ret) are 
calculated from Ft`v(_+,ret ) = (at`,v- av,t`)(_+,ret ). Note that Tr(F  v..), the "total 
coupled radiation field" of the system, takes over the physical role played 
by the " f ree"  radiation field of conventional Maxwell-Lorentz theory. 
Now having chosen boundary conditions on the solutions on (2.13) so that 
for like charges, equation (2.21) is positive definite, leading to equations of 
the form of (2.20), we substitute (2.20) into the equations of motion for 
charged particles (2.10) to obtain 

(Xr(Ft`v) - F~)  -= Xr(F~(,,,)) - Ft`v,,,, + Ft`v(_) (2.24) 

and hence the particle equations of motion become 

MdUt` = f dx3[(Tr(Fv,xt,O-Fv,ro,,t'+ Fv,_,t`)J&)] (2.25) 
dt 

This is directly seen to be equivalent to 

m ( K ) - -  
du t'(lO - q( K)uV(K) 

d r  ( K )  c 

N 

J =# K 
=1 

(2.26) 
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which is the finite, physical Lorentz-Dirac equation for classical electrons. 
This has been obtained by a dynamic, operational subtraction mechanism, 
built into the theory, and resolves in an elegant fashion the problem of the 
infinites in microscopic classical electron theory. It has also been shown 
that a macroscopically averaged charge-field of the form (Clifford, 1975) 

(sp.av.) 

(2.27) 

(where sp.av. ----- space average) is a field which can be associated with the 
usual macroscopic Maxwell-Lorentz electrodynamics, as an approxima- 
tion in the macrocosm. However, we now see that Maxwell-Lorentz 
electrodynamics may not be fundamental in the microcosm since it can be 
derived as an approximation to the microscopic charge-field formalism in 
the macrocosm. This suggests that the inherent self-energy infinities in 
Maxwell-Lorentz theory, which appear in its microscopic application may 
not be fundamental, since they are induced by the application of an 
essentially macroscopic approximation to a microscopic domain. If this is 
true it may also be that the self-energy infinities in conventional quantum 
electrodynamics are not fundamental for the same reason, since QED is 
essentially a second-quantized version of Maxwell-Lorentz theory. The 
real test of this assertion is the generalization of the charge-field theory to 
the second-quantized domain. In the next section we present a second- 
quantized version of "charge-field" quantum electrodynamics, and study 
its properties in regard to this question. 

3. THE QUANTUM ELECTRODYNAMICS OF MUTUALLY 
INTERACTING CHARGE FIELDS, (QUANTUM 

ELEMENTARY MEASUREMENT 
ELECTRODYNAMICS)--QEMED 

The second quantization of the classical charge-field theory of elec- 
trodynamics is most easily obtained by generalizing the classical theory 
into a "semiclassical" form, and then imposing Dirac anticommutation 
relations (in the context of a "hole-theoretic" electron-positron for- 
malism). No separate commutation relations need be imposed on the 
Maxwell charge fields since they will be automatically quantized via their 
inseparable functional relationship to the Dirac current operators. In this 
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manner we will see in what follows that "charge-field photons" will be 
automatically induced by the fermion electron-positron quantization. 
Since we will also show that these dynamically generated charge-field 
photons have all the properties of the quanta of the radiation field (now 
generated by electron-positron quantization) there will be no need to 
reintroduce them into the charge-field quantum electrodynamics. This will 
generate a distinct calculational advantage in that the Hilbert space of the 
formalism will not require an indefinite metric in order to be expressed in a 
manifestly relativistic covariant form. We begin our semiclassical generali- 
zation of the formalism by simply replacing the matrix array of point 
charge trajectories by the N column of first-quantized Dirac wave func- 
tions 

<'> ] 
(+(x)) -~ " ~ ( x ) ,  2~<N<~  

and then noting that this implies that the matrix current Jr now obtains 
nonzero off-diagonal elements, associated with exchange currents, 

(3.1) 

j ( | l )  . . .  j(IN) 1 
..... �9 . . .  �9 

is</,, 
(3.2) 

So, via the charge-field concept, there must be off-diagonal "exchange" 
charge fields in the matrix Maxwell charge-field A~ as 

.4(11) A ( 1 N )  ~-/x . . . . .  p, 

A~ = (3.3) 

A ( N | )  A(NN) . o g  . . . . .  g 

Note; however, the fact that this implies that since (~<x~3/~<J))*= 
(~/(J).C,~<K)), then in (3.2) 

J ;  = i S  (3.4) 

where T means matrix transpose on K,J labels. Hence we must be careful 
in generalizing the classical action so as to guarantee that the Hamiltonian 
energy density will be Hermitian. We have found a successful quantum 
mechanical action, with these properties (which goes over into the previous 
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classical action where the exchange currents and charge fields are negligi- 
ble), to be, in h = c -- 1 units, 

i= f dx4 ~ ( -  iYg+ M)~p+ H.c. 
2 

+ fdx4[ Tr(F~v)Tr(F~V)-4 Tr(F~vF~V) 

+ (Tr(J ,)Tr(A u) _ Tr(J~A ~))] (3.5) 

where, as in the classical case, the current J~ obeys a current conservation 
identity before the variation. This can only be obtained, in the quantum 
mechanical case, by introducing in (3.5) the covariant nonlocal "trans- 
verse" 4-current defined as 

j r(x)--  f dx%O(x- x')j~(x') (3.6) 

ot where P ,  ( x - x ' )  is defined as 

a ~ - -  ot 4 P, ( x - x ) = ( a  t ~ (x-x'l-O.O~ (3.7) 

It is straightforward to check that J j ~ = O  is valid before and after the 
variation of (3.5). Thus we have a complete analogy to the classical 
charge-field formalism, and are ready to carry out the variation of 6~r 5, 
and 6A~, to obtain the "first-quantized" Dirac and Maxwell equations of 
motion, in this new charge-field context, as 

[ - i~+  M -  e~t'(Tra~ - a~*) ] ~ = 0 (3.8) 

where y~-~y~| Iu| N, and 

with 

r , t )  

(Tr(F~v)-  F.v ) = ( T r ( J . ) - J .  *) 

F.o*=F.v ~, S.*=S. ~ 

(3.9a) 

(3.9b) 

Note, in (3.8), the charge-field a t is related to A t by 

- -  , 4 p  a , , a~(x)= f dx ~ (x-x )A~(x ) 

Go = (A~.v- Ao.~) = (a,~o- ao.,) 

(3.10a) 

(3.lOb) 
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It is the presence of the transverse 4-current (3.6) in the action (3.5) which 
causes a~, to appear in (3.8), and also guarantees that conservation of 
current J~'~=O is satisfied, as is required by the charge-field Maxwell 
equations (3.9). In cases where the exchange currents are negligible (i.e., 
for physical situations in which wave-function overlap is small between 
~k <x) and ~t~')) the transverse 4-current will go over into the usual "direct" 
current j~xx).__>j~xx), which will automatically be conserved by the equa- 
tions of motion. In cases where the exchange currents are important, it is 
the full transverse 4-current (3.6) which is conserved, as is implied by the 
presence of a t and not A~, in the Dirac equations of motion. At this point it 
is instructive to clarify the role of gauge transformations in this formalism. 
First of all we note that the charge field a t obeys gauge condition 
identically 

a~'~-----0 (3.11) 

while the charge-field A t has an arbitrary value of A~ '~. However it is easy 
to verify that arbitrary gauge transformations on A t leave (3.11) un- 
changed. The reason why the Lorentz-gauged charge field a t appears in 
(3.8), instead of A t ,  is because of the presence of the transverse 4-current 
(3.6) in the action (3.5). For example, we see that in the interaction part of 
the Langrangian 

f dx4Tr(J~)Tr(A,) = f dx4Tr(+)Tr(a ~) (3.12a) 

f dx4Tr(Jt, A t,) .=. f ax, Tr(La~ ) (3.12b) 

so that when we vary 8~, it is actually a t and not A t which appears in the 
equations of motion for ~k given in (3.8). Hence the formalism is restricted 
to have only the Lorentz-gauge freedom, because of the use of the 
transverse 4-current, required by current conservation. However, even 
though the physically observed charge field is a t (as seen by ~ in its 
equation of motion), we can still make gauge transformations on a~, itself. 
This might be like 

a~ = (a~, + 0~,A) (3.13) 

where VIA = O. In the charge-field context, this would imply that A would 
be of thegeneral  charge-field form 
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where S(x') could be a real "source" function of +, e.g., S = ( ~ ) .  Then 
since this implies that, for N/> 2, 

(Tr(a~)-  (a~)*) = [ ( N -  1)O~A+(Tr(a~)-a~*)] (3.15) 

we see that (3.8) will remain form invariant if we simultaneously make a 
gauge transformation on qJ as 

~'(x) = exp[ - i ( N -  1)~(x) ] q~(x) (3.16) 

where ~(x) = fdx'4D(x - x')S(x'), then 

[ - i.ff+ M-ey"(Tr(a~)-a'~ *) ] +' = [ - i~+ M-ey~(Tr(a~)-a~*)]~p 

= 0  (3.17) 

is valid. Hence this formalism is a gauge theory for charge-field gauge 
freedom restricted to the Lorentz gauge group. However since elec- 
trodynamic observables will always be gauge invariant, this restriction will 
not produce any observable effect on the gauge-invariant quantities in the 
formalism. Having clarified the nature of gauge transformations, we now 
study the total energy of the system as obtained from the canonical 
energy-momentum tensor T~v associated with the action principle (3.5). It 
is easily obtained as 

= f dx3Too = f dx3 ( [ 1 (lp*(gll~ �9 p-4 -/~g)tp -4- H.r ] 

- [ Tr(j)-Tr(a) - Tr(j-a) ] 

+ �89 [ (Tr(r))2 + (Tr(B))2- T r ( E . E +  B.B) ] ) (3.18) 

Now in order for the theory to be physical, the total energy must be 
positive definite. In a manner similar to the classical case discussed in 
Section 2, the charge-field solution to (3.9) which in its "direct" charge- 
field structure is of a similar form as that of (2.19) and (2.20), N >/2, as 

a~ = {am+ ) + [Tr(am_,)/(N-1) ]} (3.19) 

except than now, since J~ contains off-diagonal exchange currents, this 
means that 

a.,.:x)-- f Ux'4D,+,(x-x')J.(x') (3.20) 
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contains off-diagonal charge fields in (3.19). In particular the components 
of (3.19) are (N > 2) 

1 U 
-~a(K/O-- a(/eK)<+> + (  ~-77T-1 / ~ a(fJ>( >1 

\ i v - - x / J = l  j 
(3.21a) 

a ( ra ) - ( , , ( r a )  "1 (K4=J) (3.21b) 
g - -  \ ~ t ~  ( + ) 1 '  

When substituted into the equation of motion (3.8), this gives us 

[ - i~+ M -  ey ~(Tr(am_ ) + (Tr(am+ >) - a;<+>)) ] ~b = 0 (3.22) 

or equivalently, since (a~(+)+ a~(_))= a,(,~ (3.22) is also of the physically 
transparent form 

(3.23) [ -/ ,3'+ M -  e3, ~(Tr(a~(,o,>) - a;(+,) ] ~p = 0 

This is the "first-quantized" generalization of the classical charge-field 
electrodynamic formalism presented earlier; however, it still is not com- 
plete in this form, since the negative-energy Dirac solutions in (3.22), (3.23) 
could still make the energy (3.18) not positive definite in the associated 
Hilbert space. This is a reflection of an old difficulty associated with the 
Dirac equation, which is soloed by "second-quantizing" the tp (K) in the 
context of a Dirac hole-theoretic quantum field theory scheme, where it 
becomes a non-Abelian anticommuting operator. To implement this we 
impose the following canonical anticommutation relations on the tp (/O as 
(K,J= 1,2 . . . . .  N;N >2) 

{ I~(K)'f(X), r }1' =t '= ~ (KJ)~ 3(X -- X') 

(r '= ' '=0 

{ r r ;(x')} I '= "= o 

(3.24) 

For consistency we must also make the theory invariant under charge 
conjugation of the @(*0. This requires the standard replacement of ~(*o~, @s 
by �89 (s)] in the theory, via (3.6) as 

f )[ gl l, ry>(x') ] (3.25) 

and also in the various charge-field operators in (3.20), (3.22), and (3.23). 
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Then the Hamiltonian operator (3.18) can be written in the charge-con- 
jugate invariant, Hermitian form (where t denotes Hermitian conjugate) as 

f d x 3 {  l ( [** ,  Uo , ]  + [ - (Tr(j)'Tr(a) - Tr(j .a))  

+ �89 ((Tr(E)) 2 + (Tr(B)) 2 - Tr(E-E + B-B)) } (3.26) 

where H 0 =--(a-p +/?M). In (3.26), the Hermitian property of H is guaran- 
__ T teed by the fact that j~ =j~  and a~ -a~  are true. In this second-quantized 

theory, the operator equation of motion for ~b, in the Heisenberg picture, is 
then formally similar to (3.22) as 

[ - i9'+ M-eT~'(Tr(a~,~_)+(Tr(a~r162 (3.27) 

and this must also be equivalent to 

--gate= [ n ,~b]  (3.28) 

since H is the operator generator of time displacement in this "charge- 
field" formulation of quantum electrodynamics QEMED. The consistency 
of this requirement with the anticommutation relations (3.24) implies 
additional sets of "dynamically" determined equal-time commutation rela- 
tions such as 

[ a~(x),q~(x') I I '=c= 0 (3.29) 

{ �89 [ (Tr(E(x))) 2 + (Tr(B(x))) 2 - Tr(E(x). E(x) + B(x)-B(x)) 

- Tr(p(x))Tr(ao(X)) + Tr(p(X)ao(X)) ], ~b(x') } 1 '~ ' '=  0 

(3.30) 

and their corresponding equivalents for q~(x') and a~(x'), where E and B 
are calculated from F~,,,--(a~,.v-a~,~, ), and a~ is given by (3.19). These 
"dynamically induced" equal-time commutation relations represent nonlo- 
cal constraint equations on the charge fields, which are not equivalent to 
the use of "canonical" equal-time commutation relations on the a~,. Hence 
we avoid, in QEMED, all of the pathologies associated with the use of 
canonical commutation relations on the a~,, such as the need of an 
indefinite metric in the Hilbert space of states. This is a distinct formal 
advantage of QEMED over QED, and suggests that the need for an 
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indefinite metric, in the Hilbert space, is associated with the nonopera- 
tional concept of quantizing the "free, uncoupled radiation field" with 
canonical commutation relations. 

Now if (3.19) is inserted into (3.26), H takes on an operator form 
which reveals its positive definite character more explicitly as 

__ { interacting [ total coupled ) 

Dirac energy \ energy 

[ / + H |  electromagnetic - -  H ] exchange electro 
\ energy L magnetic energy 

]} 
where 

(3.31) 

interacting 3 1 t H(l,i,~oo,,o,~y)-fax [(~[~ ,Ho:] +H.c.)-Tr0 ).Tr(a)+Tr(j .a)] 

(3.32) 

[ t o t a l  coupled ~ . 
H / radiation field ~=-- J dx 3 (Tr(e(-)))2 + (Tr(b(-)))2 

\ energy : - -  2 ( N -  1) 

(N ~ 2), and 

, eel ctro [ (re d ) rOe s me c,] 
energy L magnetic energy J 

(3.33) 

=_ fax3[ (Tr(em))2 + (Tr(b'~t))22 

- Tr(e(+). el+) + b(+). bf+)) 2 ] (3.34) 

In 0.31), the first term (3.32) has positive definite expectation values in the 
Hilbert space via the hole-theoretic, charge-conjugation invariant second- 
quantization scheme associated with using canonical commutation rela- 
tions on the q~ (we call this "elementary fermion quantization" EFQ); the 
second term (3.33) is the sum of squares of charge-field operators and 
hence is positive definite automatically; the third term (3.34) is the dif- 
ference of two positive definite operator terms, which while being positive 
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definite only for states containing like charges, will always be dominated by 
the positive definite mass energies associated with the first term (3.32). 
Hence the choice of (3.19), as the charge-field solution to the Maxwell 
charge-field operator equations, the Hamiltonian operator (3.26), (3.31) is a 
positive definite operator. This will guarantee that a state with lowest 
energy, i.e., the vacuum state [0), will exist in the QEMED formalism. It is 
important to note that in the first and third terms in (3.31), the presence of 
the exchange charge-field operators generates diagonal terms which cancel 
out the time-symmetric self-interaction operators in the direct Maxwell 
charge-field terms, in an operator context. This is consistent with the 
presence of a similiar cancellation in the operator equations of motion 
(3.27), and suggests that this will lead to states in the Hilbert space with 
finite "self-renormalized" observables occurring automatically, owing to 
the operator dynamic way in which the time-symmetric self-interaction 
operators are dynamically excluded via the basic structure of the QEMED 
formalism based on the "elementarity" of the microscopic measurement 
process at the charge-field operator level. 

As indicated earlier, we have not used "canonical commutation rela- 
tions" on the photon charge-field operators, rather we invoke them in the 
EFQ context, only for the fermions. So one immediately asks, "where do 
photons enter the QEMED theory"? The answer comes from the fact that 
the physical effects of charge-field photons are present naturally in the 
form of the operator Tr(a~(_)) which appears automatically in the operator 

equation of motion (3.27). To show this more explicitly let us denote this 
operator by the symbol A (TcRF) which we will call the "total coupled /z 
radiation field" operator of the system, as 

A(~TCRV)(X)=--Tr(a~,_)) = f dx '4D(_)(x  - x ' )Tr (J~(x ' ) )  

= (A (TCRF)(x))? (3.35) 

Now we note that A frCRF) obeys the "photonlike" equations of motion, as # 
identities, 

[--] A (TCRF) = D (A 7CRF,)'O" ~--~ 0 (3.36) 

even though it is clear from its definition (3.35), that A ~  cae) is not a "free" 
radiation field, since it is coupled to the matrix trace of the current 
operator Jr" Also from (3.28) we see that 

-- iOtJ ~ ---- [ H, Jt,] (3.37) 
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will automatically imply 

- i~ ,A~ TcRv) --[  H,A~ TcRv)] (3.38) 

without the need of "canonical" rules o n  A~ (TCRF). This is the key advan- 
tage of the QEMED quantum electrodynamics in that it eliminates an 
unnecessary quantum algorithm from the physical arena, and replaces it by 
a more compact and conceptually beautiful EFQ approach. Operator 
consistency of (3.36) with (3.38) requires that we have [A(TCRF)(x "~ L ~ \ I~ A~CRIO(X')][t=t'=O being true, which is a charge-field form of "micro- 
scopic causality" at the operator level. To see how we generate photon 
states in the theory, via (3.35), one substitutes the Fourier transform of the 
D(_ ) (x -  x') function into AJ TcRv) and obtains an automatic decomposition 
of it into its positive and negative frequency parts as 

A~CRF)(x) = f dX3 [A~Ci~)(+)(X).exp(i~xV ) 
(2~r)3w(X) 

+ A (~TCRF)'-)(X)" exp( - iXvx")] 

= [ ] (3.39) 

where 

W(~) ~--- ~ ~"~- ~kO, ~p~P"~- O, ..X'u'A (TCRF)(-+)--tt ~---'0 

�9 and 

d~ 3 * 
A(TCRF)(• ) = f (2~r)3w(?O A(TCRF)(-)(X)exp(+ i~x") (3.40) 

where 

i ! p A(TCRF)'+-'(~)_~[+_(-~Ifdx 4Tr(J,(x ))exp(-T- i?~x '~) (3.41) 
L \ i. , 

Now since A~CRF)(+-)(X) is a linear functional of the operator Tr(J,), we 
have from (3.37) and (3.38), after an integration by parts, that 

_+ .. ,A)A,~( (TCRF)(• = [ H,A (~TCR-V)(• ] (3.42) 
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Since H is positive definite, as indicated earlier, then a vacuum state 10> 
exists in the Hilbert space of the charge-field formalism. Then applying 
(3.42) to the vacuum state we have, since HI0 > =0, that 

_+ w(h)A(~TC~)'• = [ H,A(TCRV)'~-'(X)]IO ) (3.43) 

H(A~WCP'-F)'+-'(;X)IO>) = __+ W(A)(A~TC~'~(X)I0>) (3.44) 

However, since w(~)> 0; ( H  >/> 0, it must be that 

A '(x) 10 > = 0 (3.45) 

that is to say, A~CRr)(-)(X) is a destruction operator for charge-field 
photons on the vacuum state [0>. Similiarly (3.44) also implies that 

a(.TCRF)'+'(X)I0> = I1 > (3.46) 

or that A~Cgr3(*~(?~) is a creation operator for charge-field photons on the 
vacuum, and that I1 x > is a one-photon state of energy w(X). We can also 
create multiphoton states in the same manner, by operating on the vacuum 
[0> with A~CRV)(§ over and over again. Hence QEMED contains in its 
Hilbert space physical states which contain all the physical properties of 
photons. There will be a difference, however, associated with the Einstein 
principle of separability and photon measurements, which will be 
elaborated on in the conclusions to this paper. In all other "physical" 
aspects these charge-field photons, via (3.36), are equivalent to the photons 
generated in the standard QED. This unique algorithm is occurring in the 
Heisenberg picture for interacting electron-positron operators in a 
charge-field, elementary measurement context, and suggests that photons 
are not elementary particles. Instead QEMED implies that photons are 
secondary dynamical manifestations of electron-positron quantization, via 
EFQ, in a charge-field context. The fact that this is occurring in the 
Heisenberg picture allows the full richness of its machinery to be brought 
into action, in obtaining solutions to QEMED. There are several ap- 
proaches one might take as follows: first of all we might attempt to set up 
a Heisenberg "bare-state" perturbation-iteration scheme for the for- 
malism. This is made easy by the fact that the absence of the time-symmet- 
ric self-interaction operators in the equations of motion allow "solitons" to 
exist in the theory, and may yield an elegant method of obtaining solutions 
in both a "bound state" and "S-matrix" form. The presence of "soliton" 
states in QEMED is a unique property associated with its structure, which 
is not shared by the standard QED. This will play an important part in the 



322 Lelter 

inherent finiteness and self-consistency of the formalism as well as allow- 
ing "soliton" calculational techniques to be applied with ease ( a distinct 
advantage for QEMED, since QED doesn't have this ability to capitalize 
on this calculational domain). This will allow insights into the Hilbert 
space structure of QEMED to be developed in a clear and concise manner. 
Next, one might attempt to develop the structure of the operator Green 
functions of the formalism directly, as in the Lehmann spectral forms for 
the two-point functions. (For example, this would be particularly useful in 
determining the nature of the renormalization constants and their possible 
finiteness in the QEMED formalism.) 

Finally one might attempt to obtain information directly from the 
Heisenberg operator equations of motion, in an approximation scheme 
which involved iteration and direct integration techniques. This way has 
shown recent success in solving for radiative corrections in the standard 

QED (Ackerhalt and Eberly, 1974). Since this last approach may be 
conceptually the simplest way to obtain information about the predictions 
of QEMED, we will formulate this last approach more specifically in this 
paper. In general, the QEMED quantum electrodynamic formalism is 
written in terms of an N | N matrix operator equation 3.27, in a "layered" 
Hilbert space consisting of N sub-Hilbert spaces interacting with each 
other via this operator equation of motion, where (2 < N <  ~).  

Suppose that we wish to study the simple problem of the interaction 
of a quantum mechanical electron in the presence of an "external" 
time-independent current, like that generated by the electric and magnetic 
fields of macroscopic instruments in the laboratory (to a first-order ap- 
proximation). In this case, we can approximate the full N-fold formalism 
by an N = 2 approximate formalism, associated with the electron-positron 

/'(22):I(�9 which is taken current operator jO0_~ and the external current ~ _~ ,  , 
to be a c number in this approximation. In this case all exchange-current 
operator effects between ~k O) and ~k (2) are neglected and assumed negligible. 
This neglect of the exchange-operator effects will be, to first order, the 
manner in which the interaction of a "distinct macroscopic measuring 
instrument" and a microscopic quantum operator will be defined in 
QEMED (this will be elaborated on further in the conclusions to this 
paper). In this context, the current has the following structure: 

~ Jr = j~,xt) (3.47) 

where, because of the neglect of the exchange-charge-field effects in this 
approximation, (3.6) simplifies to imply 

j ( l l )  = i ( 1 1 ) =  ( _  e/2)[ ~0), yt,~pO) ] (3.48a) la J/L 

j(22)_ l(ext) (a c number) (3.48b) /t - - v / t  
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Then, since only ~(1) is of dynamical  interest in the external field ap- 
proximation, (3.19) through (3.24) and (3.27) lead to the simpler operator 
equations of motion for ~o) as 

[ - i~+ m -  ~,t',, (ext) - ~."/~a (11) ] a b ( l ) = o  (3.49) v t ~/t (ret) ~ ~ tt (--).] T 

In (3.49), since j~r is a specified, external, time-independent, c-number 
current, then 

a(eXt)(x)(~et) = J ~ ) --a(eXt)(x) (3.50) 

a n d  a (11) is the remainder of the total coupled radiation field operator -'p( _ ) 

a (' l)(x)(_)= f a x " D ( _ ) ( x  - x ')(  - e/2)[~,-((~ ), yp tk~l~] (3.51) 

Since the only quantum mechanical dynamics being studied are those of 
the anticommuting operator ~(1), we can rewrite (3.47) through (3.51) in a 
simpler form, suppressing the charge-field indices "1" and "2" as follows 

I - i ~ +  m --  ey  ~ta(ext) (x)  --  c~ tLa~t(_ ) (x)  ] ~ ( x )  -- 0 (3 .52a)  

a~(+_,(x)--(-e/2) f dx'4D(+_,(x-x')[r (3.52b) 

In this simpler notation, the associated Hamiltonian operator (3.26) be- 
comes 

n=fdx ( [ 1~'  Hextl~ ] "l- [ (Hext~) ' t '  1//] 
4 - (j-a(_)) 

+ �89 + e(_).e(+) + b(+).b(_) + b(_).b(+)) + [(e(_))2+ (b(_)) 2] ) 

(3.53) 

where n e x  t ~ [a"  (p-l-  eaex t) + tim - e~ext ]. Now arguments similar to those 
of (3.35) through (3.46) will imply that a~. )(x) acts in a manner to create 
and destroy charge-field photons, associat~e-d with tp(x), in this approxima- 
tion. One may now directly apply Heisenberg operator equation of motion 
techniques, involving interation and integration in tandem, to (3.52) to 
obtain radiative corrections to the bound states associated with ~(x) in the 
presence of J~(ext)(x). The details of these calculations, with respect to their 
similarities and differences to the standard QED results will be reported 
on in a future work. The presence of the operator charge-field potential 
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a.(_~ in (3.52) suggests that QEMED should predict the correct radiative 
corrections, similiar to that of renormalized QED, because of the earlier 
successes obtained with this operator by Series (1969). We also note that 
the absence of the self-Coulomb operator a.(.) from (3.52a) suggests that its 
associated self-energy infinity will not occur in the QEMED radiative 
corrections. Hence renormalization effects will occur only, owing to virtual 
interactions with the vacuum, which exclude serf-energy effects. However, 
since photons are being generated by a~_), without the use of canonical 
commutation relations for photons, this suggests that the virtual renorrnali- 
zation effects will generate finite renormalization constants. This is because 
the presence of infinite renormalization constants, in QED, can be traced 
to the presence of self-interaction, as well as the canonical quantization of 
free uncoupled radiation fields with canonical quantization rules. An 
important test of these new concepts will be in the arena of specific 
numerical predictions (e.g., radiative corrections to hydrogen atoms, the 
anomalous magnetic moment of the electron, radiative corrections to 
multielectron atoms, lifetime calculations to positronium, ere). We intend 
the basic formalism presented here to serve as a first step towards the 
formulation and solution to these practical tests for charge-field quantum 
electrodynamics QEMED. We suggest that, since QEMED is a gauge 
theory with U(1) symmetry, then the inherent self-consistency of QEMED 
may make it a very attractive candidate to use as a model for gauge-theo- 
retical formulations of the "electro-weak,, and "strong interactions" 
(should its numerical predictions be shown to be satisfactory in the 
quantum electrodynamic domain). This is because it is possible to con- 
struct a generalized charge-field formalism for every "conventional" quan- 
tum gauge theory presently under investigation. This may have important 
implications for future improved formulations of "electro-weak" and 
"'quantum chromodynamic" theories [with SU(2)• U(1) and higher gauge 
symmetries], which may be inherently infinite and "self-renormalizing" 
when written out in terms of the "elementary measurements" of the 
charge-field languag e presented here in the U(1) context. 

4. CONCLUSIONS: THE EINSTEIN PRINCIPLE OF 
SEPARABILITY AND QEMED VS. QED; A CRUCIAL 

EXPERIMENTAL TEST OF THE CHARGE-FIELD 
FORMULATION OF QUANTUM ELECTRODYNAMICS 

The purpose of the discussion and development of the QEMED 
theory presented here was to demonstrate that the paradigm of "elemen- 
tary measurement" between charge-fields could be extended, from its 
classical form, into a quantum electrodynamic domain. It leads to a new 
"quantum theory of elementary measurement" in the microcosm, in which 



Charge-Field Formulation of Quantum E, lectmdyn~mics 325 

the microscopic mutual, electromagnetic measurement process is well 
defined in the operator equations of motion of the theory, hence the name, 
quantum elementary measurement electrodynamics, QEMED. However, 
even though QEMED may have specific formal and operational advan- 
tages over QED, via finiteness and internal consistency, and even if future 
calculations show that QEMED is able to predict the same results about 
radiative corrections as QED, it would still be insufficient proof of 
QEMED's truth. This is because if QEMED and QED are "different" 
theories, they must "differ" in some important observable way. Both 
QEMED's agreement with experiments, and a key "observable difference" 
from QED, must be shown to really prove that QEMED is the correct way 
to formulate quantum processes in Nature. Hence what is needed, in 
addition to QEMED's agreement with QED's predictions about radiative 
corrections, is for QEMED to predict something observable that QED 
cannot predict, since if this new physical effect were to be seen in Nature, 
it would serve as a distinct test of the viability of QEMED over QED. 
Hence in the following paragraphs we will distinguish a basic key dif- 
ference between QEMED and QED, and show how it may be clearly 
tested by an experiment, which is in the process of being done Aspect 
(1976). 

To begin with, because of the matrix nature of the charge-field 
operators in the QEMED theory, and the associated fermion anticom- 
mutation relations (3.24), the Hilbert space, built up out of the eigenstates 
of the Hamiltonian operator (3.26), will have a countable, "layered," 
mutually interacting structure. This is because (3.24) generates in (3.26) 
" N "  second-quantized sub-Hilbert spaces, which interact, via charge-field 
operators, in "mutual interaction," as described by the operator equation 
of motion (3.27). Among the possible states in the Hilbert space (which can 
be built up from the soliton structure of the formalism) there will exist 
"asymptotic states" for which the "exchange," off-diagonal, charge-field 
interactions, tK-U-I / t ( ~ ) a  (sx)~'~ will have vanishing ampfitudes, in this ~, ~ " , \ " l t  (+)  / !  

asymptotic domain. There will also exist states, in the Hilbert space, for 
which the exchange charge fields will not have vanishing amplitudes 
< r  (KJ)~ (JK)g \ % ,,<+) / as well. This is a key difference between QEMED and QED, 
and is related to the basic structural operator difference between the two 
theories; involving an absence of time-symmetric self-Coulomb charge 
fields and presence of exchange charge-field operators, in an N ~ 2 matrix 
dimensional context. Let us consider the first class of "asymptotic states" 
for which t K ~ r ~  /7(rJ)a(Jm~>=0 is valid. For such states,"asymptotic t ~-~J, \-'g (+) 
correlations" may or may not be present, depending on how they were 
prepared. However, in any case these correlations are not "enforced", 

/J(rJ)a(Sl~ \ -  0 and may be broken down by interactions with owing t o \  . (+) / -  , 
other elementary measurements which may be present in the aforesaid 
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asymptotic domain. We deduce this property by a study of the soliton 
solutions in QEMED which, of course, directly affect the character of the 
Hilbert space of QEMED. 2 Suppose we identify a "system to be observed" 
and a "measuring apparatus" with such a subset of such asymptotic states 

/r(rd~'(JK~'\--O for exchange charge-field operators involving such that ,,J~ ~,(+) / -  
"overlap" between the "system" and the "measuring instrument." (There 
may still be nonzero "internal" exchange interactions inside the "system" 
and the "measuring apparatus," but these will affect only "internal" 
correlations in their structure, and not affect the asymptotic "external" 
correlations we are considering here.) Now the very fact that such an 
operator-state distinction can be made, in QEMED, for a "system" and a 
"measuring instrument" means that this (with the inherent microscopic 
operator causality of QEMED, which implies that the associated operator 
Green's functions propagate virtual information only inside their light 
cones) will automatically imply that the Einstein Principle of Separability 
will be observable in Nature [see the recent analysis and theorems of 
Selleri (1979) and Bell (1976)]. This test is further clarified by the fact that 
formal nature of QED precludes an operator distinction between system 
and measuring instrument and for this reason implies that the Einstein 
Principle of Separability cannot be true in QED (Costa de Beauregarde, 
1977). It has been proposed (Aspect, 1976) to test the Einstein Principle of 
Separability in a "time-dependent" version of the atomic photon-cascade- 
correlation experiment done by Clauser (1972). This latter experiment gave 
results which upheld the QED predictions about photon states. However, 
since these photon states exist in both QED and QEMED, Clauser's 
experiment also supports the validity of QEMED. Clauser only ruled out 
"local hidden variable" LHV theories and "neoclassical radiation" NCT 
theories. These experiments have not yet ruled out QEMED, in favor of 
QED, in the specific context of the Einstein Principle of Separability. In 
Aspect's experiment, now being developed and carried out, the Einstein 
Principle of Separability will be tested in an atomic photon-cascade-corre- 
lation experiment, in which the measuring instrument polarizers will 
attempt to measure the photon correlations while rapidly changing their 
orientations. If the Einstein Principle of Separability is valid in Nature, 
then the QED photon correlation prediction should break down when the 
polarizer flipping time is faster than the light travel time between the two 
measuring polarizers, since they will be separated by spacelike points in 
space-time. If this occurs, then QED is wrong and QEMED is correct! On 
the other hand, if the Einstein Principle of Separability is not observed in 
Aspect's experiment, then QED is correct and QEMED is wrong! 

2The details of this will be elaborated on in a forthcoming sequel to this paper, in a future 
issue of this journal. 
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In essence QEMED is suggesting that the quantum measurement 
process is fully microscopic, with the "object to be measured" and the 
"measuring instrument" belonging to the same level of microscopic func- 
tioning in the QEMED operator equations of motion, and associated 
Hilbert space. 3 This differs from QED, which carries with it the Bohr 
(1958, 1963) axiom that "the objects measured in a quantum measurement 
process have a different status in the theory to the measurement instru- 
ments, in that they belong to different levels of functioning which are not 
related mechanically .... " Hence the forthcoming test of the Einstein 
Principle of Separability, by Aspect, will also be testing the validity of 
QEMED, and its "fully microscopic measurement paradigm," against 
QED and its inherent "Bohr-complimentarity measurement paradigm." It 
is of fundamental importance to see what future calculations and 
experiments have to say about operationally distinguishing between the 
predictions of QED, and the new QEMED formulation of electron- 
positron-photon processes in the microcosm, since QEMED represents a 
quantum field theory which contains a proper union of the special theory 
of relativity and the quantum measurement paradigm at the microscopic 
level. 
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